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Theory of the polymer coil-globule transition 

M A Moore 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 10 September 1976 

Abstract. The change of a polymer from an extended coil form above the B point to a dense 
globular form below the B point is investigated in a self-consistent field approximation and 
found to be a second-order phase transition in the limit of an infinitely long polymer. Other 
theories of the transition are reviewed and further information obtained as to the dimen- 
sionality dependence of the transition by means of the analogy between the B point and a 
triaitical point. 

1. Introduction 

The change of a flexible polymer chain from an extended coil in a good solvent to a 
collapsed dense globule in a poor solvent has attracted a great deal of attention both 
theoretical and experimental, possibly because of its connection with the denaturation 
and renaturation of globular proteins (Ptitsyn eta1 1968). In this paper we shall review 
some of the existing theories of this change and present a description of it based on a 
self-consistent field approach. 

The change from good-solvent behaviour to poor-solvent behaviour may be pro- 
duced by altering the temperature or composition of the solvent. Good-solvent 
behaviour occurs when polymer segment-solvent contacts are more favoured than 
segment-segment contacts. If the attraction between the segments becomes sufficiently 
large the polymer will collapse to a globule whose density is close to that of dry polymer 
(Cuniberti and Bianchi 1974). The temperature at which this occurs is close to the 8 
temperature-the temperature at which the attractive forces just balance the excluded 
volume forces. A more precise definition of the 8 temperature is the temperature at 
which the second virial coefficient of the osmotic pressure, AZ, vanishes (Flory 1953). It 
is commonly supposed that at the 8 point the polymer has its random coil dimensions. 

For a given solution below its 8 temperature, where the attractive forces between 
polymer segments predominate, polymer-polymer contacts can increase by two differ- 
ent mechanisms: the contraction of the individual chains or the interpenetration of 
different chains. If only one chain were present in the solution, it would collapse to a 
globule; in a solution of finite concentration of polymer, chain contraction and 
aggregation will be competitive processes and phase separation could occur either by 
coalescence of globules or the aggregates made up of interpenetrating chains. 

It has been known for a long time (Debye et a1 1960a, b) that at the critical 
concentration for phase separation, extensive order sets in before reaching the critical 
temperature and that the coil size is much reduced with respect to its 8 point 
dimensions. This rapid change of dimensions with temperature below the 8 point has 
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been recently confirmed by Mazur and McIntyre (1975), who worked with polystyrene 
of molecular weight M ,  = 4.4 X lo’ in cyclohexane. 

In dilute solutions where the polymers may be presumed not to overlap each other 
to a first approximation, the lowering of the temperature below the 8 point gives rise at 
first to a shrinkage of coil dimensions, followed by precipitation (Flory 1953). The 
precipitation mechanism which prevails is determined by the detailed chemistry of the 
solute and solvent. Poly (acrylic) acid in dioxane assumes a compact globular form 
before precipitating from solution, while polystyrene in cyclohexane gives rise to 
progressively growing clusters before precipitating (Cuniberti and Bianchi 1974). 

In this paper only isolated chains in solution will be considered. We believe that in 
the limit of infinite molecular weight the coil-globule change can be regarded as a phase 
transition occurring at the 8 temperature. (In 0 3 we shall discuss what will happen for 
general dimension d and argue that for d > 4 there will be no phase transition at the 8 
temperature.) We believe that this phase transition is second order (continuous). There 
seems to be evidence from numerical studies on lattices that there may also exist 
another transition, possibly first order, at a temperature much lower than the 8 
temperature (Finsy etal 1975). We shall comment further on this possible transition in 
5 3, and return here to our main topic, the coil-globule transition. 

There have been several attempts at a theory of the coil-globule transition. The 
approaches and the conclusion as to the order of the transition have varied widely. 
Edwards (1970), in a calculation he characterized as a ‘crude approximation to a crude 
approximation’, found the transition to be first order. Lifshitz (1969) and Lifshitz and 
Grosberg (1974) obtained under various circumstances both first- and second-order 
transitions. However, this aspect of their work is completely incorrect, since their 
transitions occur at finite N, where N is the number of segments in the polymer. This is, 
of course, impossible as a phase transition can only take place in the limit of infinite N. 
Domb (1974) reviewed the numerical work on self-avoiding walks in which attractive 
forces between nearest-neighbour segments had been included and suggested that the 
transition was first order. In our opinion, the numerical evidence, such as it is, supports 
the opposite hypothesis; namely, that the transition at the 8 point is second order. 

There are two main theoretical approaches to polymer solutions. For non-dilute 
solutions, the Flory-Huggins theory and variations on it are employed. (Physicists will 
recognize it as a mean-field approximation.) As in the globule the density of monomers 
is high, we constructed a Flory-Huggins-type theory of the coil-globule transition 
(Massih and Moore 1975). It was done by solving exactly for the partition function for 
walks on a triangle cactus Bethe lattice, in which no lattice bond could be used more 
than once during the walk. This restriction on the walks is to be thought of as a 
consequence of the short-range excluded-volume forces. Attractive forces were incor- 
porated in the model by interactions which occurred only at sites at which the polymer 
touched or crossed itself. It was found that the entropy was continuous at the transition, 
but that the monomer density changed abruptly from zero to its maximum close- 
packing value at the transition. Subsequent work suggests that this transition may not be 
related to the coil-globule transition at the 8 point, but instead may be related to the 
transition of Finsy eta1 (1975), which occurs well below their earlier estimated value for 
the 8 temperature. We shall return to this point in 9 3. 

The other main approach to polymers in solution is based on Flory self-consistent 
field ideas which are used mainly for dilute solutions or single polymer molecules. A 
theory of the coil-globule transition based on the Flory approach has been given by 
Ptitsyn and Eizner (1965) and by Kron (1965) (see also de Gennes 1975). For certain 
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ranges of the parameters in the problem, their calculation predicts a second-order 
transition, but outside this range it fails to make sense, in that it predicts a transition 
even for polymers of finite length. However, the formalism on which this approach is 
based is now known to be without foundation (see des Cloizeaux 1976). 

In 5 2, we give a treatment of the coil-globule transition based on a variation of the 
Edwards (1965) self-consistent field idea. We are able to show in the large-N limit that 
this treatment is consistent with the use of perturbation theory and give an approximate 
solution of the equations. Outside the large-N limit we are unable to provide an 
analytic solution-a feature common to nearly all polymer self-consistent field 
calculations-but in this region, perturbative calculations are possible as an alternative. 
The calculation predicts that the transition takes place at the 8 point and is second 
order. 

In 0 3 we shall discuss what can be learnt from the analogy of the coil-globule 
transition at the 8 point with a tricritical transition (de Gennes 1975). Simple renormali- 
zation group arguments (given elsewhere) predict that in three dimensions there should 
be a logarithmically divergent specific heat per monomer at the transition (Burch and 
Moore 1976). What happens in other than three dimensions is also described and the 
question of whether there is a 8 point or 8 region is discussed. 

2. Self-consistent field calculations 

The self-consistent field (SCF) approach in good solvents has been reviewed by Freed 
(1972), whose procedure we shall follow here. We shall begin by finding SCF equations 
for worse than 8 solvents. 

The model used is a Gaussian random-flight equivalent chain of contour length L, 
composed of N effective bonds, each of length 1. Let us suppose initially that there exist 
non-bonded painvise interactions between them. The distribution function for R, the 
end-to-end distance, is 

= Z-'G(R, N). (2) 
ro is the position of the first segment which will be taken to be the origin of coordinates. 
Ri = ri - riPl  is the bond vector between segments i and i - 1. R 3 rN =El  Ri is the end 
separation vector. V,  is the non-bonded interaction between segments i andj. We shall 
suppose initially that U, = uS(ri - rl) E l 2  V(rl - rj)  where U is the binary cluster integral 
for a pair of segments. Its temperature dependence near the 8 point is as 

(3) U = vo( i  - e / q .  
For T >  8, the net binary force between the segments is repulsive; for T <  8 the force is 
attractive (U <0). 7,(Ri) is a Gaussian with (R;)*'* = 1. 2 is the total configurational 
integral; for large Nit is expected to vary as 

2, - Ny-'pN(v), (4) 
where p is the 'connectivity constant' of lattice enumeration studies. The free energy of 
the polymer is 

F / k T =  - lnZN+ - N l n p ( u )  as N+ 00. ( 5 )  
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We shall usually study the continuum version, i.e. the Wiener integral of G(R, N ) ,  
G(R0; LO). 

Turning off the interaction U ,  leads to the usual Gaussian form for G(R0;  LO), 
which can be found by solving the differential equation 

($-fV:)G(RR’;Ls) =S(R-R’)S(L-s) .  

To discuss the effect of interactions it is useful to introduce the probability distribution 
that a polymer of contour length L and end-to-end vector R have its segment at contour 
length L’ (measured from the initial segment at s = 0), located at the point R’. It is given 
by 

where G3(RR’O; LL’O) is the Green function for a polymer starting at the origin, of 
length L, terminating at R and where L’th segment passes through R’. In terms of G3, 
the equation for G is 

($-fV:)G(RO; LO)+ 1 dR’ V ( R - R ’ )  dsG3(RR’O; LsO)=S(R)G(L). (8) loL 
There is an analogous equation for G3 in terms of a four-point function G4, etc. For a 
continuous chain the hierarchy never terminates. The Edwards approximation results 
from introducing a Markovian approximation to the lowest member of the hierarchy: 

(9) G3(RR’O; LsO) = Gsc-(RR’; Ls[RL])GS,,(R’O; sO[RL]), 

where 

and 

The potential of (1 1) when substituted in (10) generates SCFS, which depend only on the 
chain segment position with respect to the fixed end points of the chain-hence the 
notation [RL]. There is another way of writing (1 1) in terms of the local segment density 

(12) 
L 

p(R’1RL) = I-’ 1 ds P(R’; slRL); 
0 

Now up to this point we have supposed V(R’-r )  to be of the form I-*vs(R’-r), and 
below the 8 point U < 0. However, if one simply takes o < 0 and do not alter (13) in any 
way one finds that the polymer collapses to unphysically high densities. It is necessary to 
introduce terms which simulate the stabilizing effects of the hard-core repulsive forces 
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between the segments. A convenient way of doing this is to replace (13) by 

VscF(R’ERLl) = l-’(w(R’(RL) + Pp2(R’(=)) (14) 

where p > 0. The parameter p is related to the ternary cluster integral which appears in 
the third virial coefficient of the osmotic pressure. 

We now have a complete set of equations (8,9,10,12, 14) for an approximate 
calculation of G (we shall drop the SCF label from now on). The equations are quite 
intractable analytically. However, there is one region, which corresponds to working in 
the large-L limit for any U < 0 (i.e. below the 6 point) where a simplifying approxima- 
tion based on the following argument is possible. Imagine that VscF is given in (10). For 
concreteness, one might take it to be a square-well potential. Below the 6 point one 
expects that V,,, is strong and deep enough to split off at least one bound state from the 
continuum. The approximation consists of supposing that there is only one bound state, 
with eigenvalue A, and that it dominates G;  i.e. 

G(R0; LO) -eAL$(R)$(0), (15) 

where 
( A  -~V:+I-’(UP(R)+PP’(R)))$(R)=O 1 

and 

p(R)  = L$2(R)/l = x2(R).  
is the segment density. 

minimizing the free-energy expression 
Equation (16) can be viewed as the Euler-Lagrange equation which derives from 

F / k T =  I dR[’ 61 ’ (vx)2 +tux4 +$x6], (18) 

subject to the constraint 

dRx‘(R) = L/l (19) 

(i.e. the integral over space of the segment density is just the total number of segments 
N = L/l in the polymer). A now can be regarded as a Lagrangian multiplier for handling 
the constraint of (19). 

Equations (18) and (19) are similar to the equations derived by Lifshitz (1969) and 
can be regarded as the Ginzberg-Landau equations of the coil-globule transition. The 
‘order parameter’ is Jp(R) = x(R); the gradient term in (18) represents the energy 
which arises if the density of segments varies spatially; the other two terms in (18) are 
energies of interactions between the segments arising from binary and ternary interac- 
tions. 

Even the approximate SCF equation (16) cannot be solved analytically. However, it 
is easy to understand the form the solution takes well below the 8 points, where the 
polymer has collapsed to a dense globule. A simple variational ansatz for (18) then 
suggests itself; if 
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where the volume of the globule R = $ ~ r R i ,  and the free energy 

Varying the volume of the globule, there is a minimum of F when 

and 

F 3 L v ’  
kT 16 1 p ’  
-- _ _ _ _ -  

Notice that F/kT = -AL in agreement with equation (5). Equation (23) implies that the 
transition is second order, with the classical mean-field exponents, if equation (3) is used 
for U. 

A more refined ansafz is to take for x a Fermi function 

U 

X(R)=exp[b(R -R,)]+c 

where a, 6, R, and c are variational parameters. The detailed calculations with 
particular variational functions are not worth recording, but certain common features 
do emerge: (i) the ‘radius’ of the globule is always of order R,, where $ITR;= 
- (L/1)4@/3v ; (ii) the density does not fall abruptly to zero at the radius R,, as in the 
extreme ansatz of (20), but heals over a distance [E around R,, where 

[&p12/v2- 12/ lu(p , .  (25)  

in (25) is of the form which Edwards (1966) gives for the screening length in bulk 
semi-dilute poor solvents when the segment density is p,. It is easy to see why the 
density varies on a length scale set by tE. Consider what happens far from the origin, 
where ,y(R) is small; then (16) reduces to 

- ilV&(R) = - Ax(R) 

and so as R + O ,  x(R)-exp(-J6A/IR)/R. Substituting (24) for A, one sees that the 
length scale for density variations is indeed tE; (iii) the free energy can be expanded in 
the form 

F 3 L v ’  -- - -- - -[ 1 -Al(&) + A 2 ( E ) 2 +  . . .I, 
kT 16 I /3 R, R, 

if R, >> &. The first term represents the bulk energy of the globule. The second term is a 
surface energy term and the third term a line energy term, etc; A l  and A 2  are numerical 
constants; (iv) equation (16) is rather like the time-independent version of 
Schrodinger’s equation for a particle moving in a potential well. In three dimensions a 
bound state is formed if the product of the depth of the well and its (radius)’ exceeds a 



Theory of the polymer coil-globule transition 311 

certain value. In this instance, the depth is about v2/@ and the radius is of the order of 
R,, so for a bound state 

where A. is a numerical constant. If R, < A O t E ,  no bound state is formed. Another way 
of writing (27) is 

v4L2/P18 -A;  (28) 

as the condition for just forming a bound state. One sees that at given v and P, the 
polymer has to be longer than a certain critical length before it becomes self-bound. 

However, is the use of (16) and (18) valid where (27) holds, i.e. when a bound state 
just forms? One condition in the validity of (16) and (18) is that the bound state 
eigenvalue dominates the Green function; this is equivalent to having 

AL >> 1. (29) 

At the point where the bound state disappears, A = 0, so a treatment based on (16) or 
(18) cannot be used to describe the formation of a bound state. In fact, such a treatment 
leads to the incorrect result that a phase transition occurs at finite L when the bound 
state forms. This is the mechanism by which Lifshitz (1969) and Lifshitz and Grosberg 
(1974) obtain transitions at finite N. The appearance of a bound state in the Laplace 
transform of G(R0; LO) does not imply any transition. The fact that we are working in 
the continuum limit (i.e. with L rather than with a definite number of segments N) does 
not alter the basic requirement that a phase transition can only take place in the limit 
L +CO. It might happen that use of (16) or (18) is permissible nearly up to the point of 
disappearance of the bound state; one expects in the vicinity of the bound state that 

AL - (v2L/&u(1 -A05,/R,). (30) 

As R,+AO&, AL + O .  The coefficient (v2L/l,B) is of order A;l7/v2L -A:l3/P1I2 and if 
this is large, i.e. P << 16,  then (16) and (18) will be good approximations nearly up to the 
point at which the bound state disappears. 

Between the 8 point and the region of formation of the bound state in (16) one will 
have to return to the full SCF equations. Alternatively, one might span this region by 
ordinary Fixman (1955) type expansions in v and P. An interesting question which we 
cannot answer is whether the full SCF equations predict a phase transition at finite L as 
does their approximate form (16) or (18). A question we can answer is whether the SCF 

is consistent with perturbation theory well below the point of globule formation. 
Despite being set up as a self-consistent calculation, it is strictly only valid within 
perturbation theory and, as such, is satisfactory if 

lvl/(i/L +2/vlp)1/2<< i3 (31) 

(Moore 1977). When 2/vlp << l/L, this reduces to the condition IV~L ' /~<<  17'2-the usual 
requirement for a Fixman-type expansion to be valid (Fixman 1955). For 2(vlp >>l/L, 
we require 1v I << 2p16 (which in the globule case implies /3 << 16)  for the validity of the SCF 
treatment. Hence, provided P is sufficiently small the SCF should provide an adequate 
description of the coil-globule transition. One might wonder, however, to what extent a 
description which results in classical critical exponents is correct. This is the subject of 
0 3 .  



312 M A  Moore 

3. Tricritical-point analogies 

De Gennes (1975) has already discussed the analogy between the coil-globule transi- 
tion at the 8 point and tricritical behaviour. In this section we shall derive further 
information by use of this analogy. One aspect of the analogy is the relation of the 
‘connectivity constant’ ~ ( u ,  p ) ,  which is related by ( 5 )  to the free energy per segment, 
and the transition temperature T,(u, p )  in the tricritical spin system 

F(V, P )  - 1/Tc(U, P I .  (32) 
Now renormalization group studies (Burch and Moore 1976, Riedel and Wegner 
1974), show that l/T,(u, p )  has a regular power series development in U and p and also 
non-analytic terms of the form U’/‘, E > O .  When E = 1, i.e. for three dimensions (as 
E = 4 - d ) ,  the non-analytic term takes the form 0’ ln(u/Z3). The free energy per 
segment must therefore have a term for d = 3 

F / N ~ T -  ( I  - e/r)’ In1 1 - e/rl 
so the specific heat at the transition diverges logarithmically. Numerical work by 
Rapaport (1974) supports this result and incidentally provides numerical evidence 
against Domb’s (1974) assertion that the transition is first order according to numerical 
studies. 

For d > 4, we believe that T,(u, p )  is probably analytic in U and p and that there is no 
phase transition in the limit of infinite N at the 8 point. We would cite, as evidence for 
this belief, the calculation of Massih (1975) on the triangle cactus Bethe lattice in which 
no phase transition occurred at the 8 point, defined as the temperature at which the 
second virial coefficient A2 is zero. Bethe lattices are essentially infinite dimensional 
and so by our argument would not be expected to have a phase transition associated 
with the 8 point. The phase transition which is found on this lattice is probably similar to 
the transition discovered in numerical work by Finsy er a1 (1975). Domb (1974) 
suggested that the coil-globule transition was related to the gas-liquid transition in 
segments of the polymer chain. We suspect that the transition of Finsy eta1 and that on 
the Bethe lattice is related to a liquid-solid transition of the segments. It would be useful 
to have further numerical work on this transition in order to elucidate its order 
parameter, etc. It must also be admitted that what we are postulating, namely that the 
coil-globule transition at the 8 point disappears in greater than four dimensions is 
unusual, in that d = 4 is not commonly a boundary between the existence or non- 
existence of a phase transition. 

For d < 3 the tricritical behaviour is non-trivial and we shall not comment further 
here on what might happen at d = 2. Right at d = 3, tricritical behaviour is essentially 
that of mean-field theory, but modified by logarithmic corrections (Wegner and Riedel 
1973). In other words, the work of 0 2 is valid up to logarithmic factors (which will be 
hard to observe experimentally). An interesting question is whether there is a 8 region 
f o r d  = 3 or a 8 point. By a 8 region we mean that the temperature at which A2 vanishes 
is not the same as the temperature at which (R’) - N, N+ CD. If there were a 8 point, the 
two temperatures would coincide. (For finite N there is certainly a 8 region. Also, one 
expects for d = 3 logarithmic corrections to the random-walk result ( R 2 )  -N. )  We 
believe that for d = 3 there is a 8 point, but that in certain quantities one may have to 
take N enormously large before this becomes apparent. An example is the third virial 
coefficient A3. It should also fall to zero at the 8 point, but will miss being zero at finite N 
by terms of order p/lnN. (Technically, this is because p is essentially a marginal 
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operator in three dimensions and under renormalization group transformation vanishes 
logarithmically. It is analogous in its behaviour to the coefficient of the 46 term in an 
O ( n )  symmetric field theory (Massih 1975).) Hence, in the limit of infinite N, A2 and 
A 3  would go to zero at the same temperature. In practice, A 3  will be non-zero at the 
temperature at which A 2  is zero. 

4. Conclusions 

Our chief result is that the coil-globule phase transition takes place in the infinite-N 
limit at the 8 temperature and that the transition is second order. The behaviour at finite 
N can be handled within the framework of the SCF formalism of Q 2 for temperatures 
well below the 6 point, when the globule is well formed, and, if desired, by ordinary 
Fixman expansions for temperatures just below the 6 point, when the coil’s dimensions 
have hardly fallen below the random coil value. 

Further work is needed in several directions; experimentally it would be useful if the 
light-scattering experiments on polystyrene in cyclohexane (Mazur and McIntyre 1975) 
could be pushed to the limit, when 

(Y E ( R 2 ) / ( R  - N2l3/N - 
i.e. to where the collapse has taken place, so that the density of segments is of order 
- u / p  rather than of the random coil value N/l3N3l2 - 1/13N’/’. It would then be of 
interest to probe the density profile of the globule and check whether the density does 
fall to near zero from its bulk value over the length scale &, and that the radius of the 
globule is of order R,. Theoretically, an outstanding problem is the question of whether 
the transition of Finsy et a1 (1975) really exists or whether it is just an artefact of 
numerical work, 
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